TRANSTIBIAL VERSUS INDEPENDENT FEMORAL TUNNEL DRILLING TECHNIQUES FOR ARTHROSCOPIC ANTERIOR CRUCIATE LIGAMENT RECONSTRUCTION EVALUATION OF FEMORAL APERTURE POSITIONING

Maged Abouelsoud, Haitham Kamel Haroun, and Mohamed Rezk Allam

ABSTRACT:

Background: Although numerous clinical and cadaveric studies have compared transtibial (TT) versus tibial independent (TI) either anteromedial (AM) portal or Outside-in (OI) drilling techniques regarding anatomic femoral tunnel aperture placement in single bundle anterior cruciate ligament reconstruction (ACLR), there is no consensus on which technique offers the best anatomic position according to footprint position.

Aim of the Work: The aim of this study is to conduct a systematic review and meta-analysis for studies comparing the anatomical position of femoral tunnel aperture in single bundle ACLR using TI and TT techniques.

Methods: (PubMed, Cochrane library and Google Scholar) were searched for relative studies that evaluated femoral tunnel aperture position in patients and cadavers underwent arthroscopic single bundle ACLR. Meta-analyses were performed to pool 28 studies included in 15 outcomes measuring femoral tunnel aperture position by estimating the mean differences and their 95% confidence intervals from mean and standard deviation for each study.

Results: 48 clinical and cadaveric studies compared femoral tunnel aperture position between TT and TI (AM and OI) techniques were obtained for final research. In these studies, 2384 clinical and cadaveric knees underwent arthroscopic single bundle ACLR, we qualitatively assessed the femoral aperture position in all 48 studies showing that the difference between TI and TT was non significant except in the direction perpendicular to Blumensaat’s line (BL), but with low mean difference and anteroposterior (AP) anatomical axis.

Conclusions: There was non-significant difference between TI and TT technique regarding placing femoral aperture position closer to footprint position. There was non-significant difference in femoral aperture sagittal plane position along BL or along (proximal-distal) PD axis. Regarding femoral aperture coronal plane placement in the axis perpendicular to BL, modified TT technique improved the femoral aperture position in this axis. While regarding femoral aperture placement in the anteroposterior (AP) anatomical axis; TI technique placed femoral aperture significantly more posterior than TT technique, this was proper position regarding anatomic ACLR, while according to the recent concept of ACL femoral footprint, this might be improper position."

INTRODUCTION:

Improper femoral aperture placement is the most common cause of anterior cruciate ligament reconstruction (ACLR) failure or unsatisfactory outcomes (long term joint degeneration and re-rupture, technical errors
have been noted in 50% of ACL failure cases\(^1\). The proportion of femoral, as opposed to tibial tunnel positioning errors is 3:1 because the knee’s center of rotation is closer to the femoral insertion and preparation of this tunnel is considered to be one of the most complex procedures in ACLR\(^2\).

With further anatomical and biomechanical studies, surgeons realized the two-bundle anatomy of the ACL and the specific role of its lower, shallower fibers posterolateral (PL) bundle in its rotatory stabilizing function, accordingly, surgeons attempted to restore the native footprint especially at the femoral side. This was the concept of the double bundle ACL reconstruction techniques “Anatomical double-bundle ACLR reconstruction”\(^3\).

Recently, there are several modifications have been introduced on conventional transtibial (cTT) technique to target femoral aperture more anatomically to the femoral footprint such as altering the tibial position in relation to the femur during femoral aperture drilling, altering the starting point of the tibial tunnel, TT technique assisted by AM portal and posterior notchplasty at over the top position. In TT technique, femoral tunnel is drilled through tibial tunnel which results in a significantly more anterior and vertical position of the femoral tunnel, to overcome the problems of TT technique, surgeons began drilling the femoral tunnel through AM portal\(^4\).

The proper positioning of the femoral tunnel is much easier in AM portal technique than TT technique because the position of the femoral tunnel is restricted by the angulation of the tibial tunnel in the frontal and sagittal planes in the TT technique\(^5\).

METHODOLOGY:

Search methods for identification of studies:

Electronic research: Databases searched (PubMed, Cochrane Library and Google Scholar). Searches in these databases were carried out in accordance with PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses)\(^6\). There were restrictions for electronic search for studies including English language only.

Searching other resources e.g. Searching references lists of the included studies.

Criteria for considering studies for this review:

Characteristics of accepted studies:

Regarding design; clinical studies: randomized controlled trials (RCT), non randomized controlled clinical trials, cohort studies, and case-control studies, basic science (cadaveric) studies: controlled laboratory experimental studies. Context those that analyze femoral aperture placement with a direct comparison of TT versus independent (AM or OI) femoral drilling techniques. Full report femoral tunnel aperture position including a suitable statistic describing average and distribution, and sample numbers. Publications in the form of an abstract, letter, or review article were not included.

Characteristics of the included Participants:

Human or cadaveric subjects (basic science), following single bundle ACL reconstruction, skeletally mature patients.

Comparisons and interventions:

Direct comparisons of TT and TI (AM portal or OI) techniques. Adequate statistical methods to compare quantified femoral aperture location resulting from TT and TI (AM portal or OI) methods of ACLR.

Outcome:

Assessment of femoral aperture position by direct measurement or by postoperative imaging: plain X-ray (PXR) and/or computerized tomography (CT) and/or
Magnetic reasonance imaging (MRI). Femoral aperture tunnel location quantified by an appropriate method.

Data collection and analysis:

Study selection:

We reviewed the title and abstract of each publication and then performed a thorough reading of all potentially relevant articles.

Data extraction and management:

Data from included studies were independently extracted into spreadsheets, including study characteristics, participants' characteristics; intervention characteristics; and outcomes of interest including femoral aperture position with summary data of outcome in each intervention group. In case of any missing data in any study, we tried to contact the corresponding author.

Statistical analysis:

For analysis of categorical outcomes (e.g., proportion of femoral aperture inside a reference anatomical range), the effect of treatment was quantified by calculating the risk ratio (RR) and associated 95% confidence interval (CI). We provided a qualitative synthesis of the findings from the included studies, structured according to the imaging technique and measurement method. If enough comparative studies are provided (at least 2) using the same measurement tool on the same imaging modality, a meta-analysis was performed.

The random-effects estimate was presented with its 95% CI, as well as the estimates of T^2 and I^2. We performed these analyses using RevMan software (version 5.3.5; Nordic Cochrane Centre, Copenhagen, Denmark).

RESULTS:

Literature search Electronic search yielded 2434 studies from three databases (PubMed, Cochrane Library and Google Scholar). After screening title/abstract, 2361 studies were excluded irrelevant to our included studies, resulting in 73 studies were screened in full text screening for inclusion criteria, and 27 studies were excluded because they included double bundle ACLR, non anatomical studies, femoral tunnel orientation, and non comparative studies. So, 46 studies are remaining from electronic search, then by manual search 2 studies were added, so 48 studies were suitable and eligible for qualitative and quantitative synthesis, out of these 48 studies there were 28 studies encountered in quantitative meta-analysis. **Fig (1)**

![Figure (1): PRISMA flow diagram of the identification and selection of the studies included in systematic review and meta-analysis.](image-url)
Studies and participants characteristics (Table 1)

Table (1): Characteristics table for patients in the included.

<table>
<thead>
<tr>
<th>No</th>
<th>Study ID</th>
<th>Imaging Modality</th>
<th>Study groups</th>
<th>Research type</th>
<th>Number of knees assessed</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Abebe et al, 2009 (13)</td>
<td>MRI & Direct</td>
<td>mTT vs OI</td>
<td>Clinical</td>
<td>16 (8 TT, 8 OI)</td>
<td>2009</td>
</tr>
<tr>
<td>2</td>
<td>Alm et al, 2013 (13)</td>
<td>CT</td>
<td>TT vs OI</td>
<td>Clinical</td>
<td>69 (34 TT, 35 OI)</td>
<td>2013</td>
</tr>
<tr>
<td>4</td>
<td>Arno et al, 2016 (13)</td>
<td>MRI</td>
<td>TT vs AM</td>
<td>Clinical</td>
<td>20 (10 TT, 10 AM)</td>
<td>2016</td>
</tr>
<tr>
<td>5</td>
<td>Bedi et al, 2011 (13)</td>
<td>Direct</td>
<td>TT vs AM</td>
<td>Basic science</td>
<td>10 (5 AM, 5 TT)</td>
<td>2011</td>
</tr>
<tr>
<td>6</td>
<td>Bowers et al, 2011 (13)</td>
<td>MRI</td>
<td>TT vs AM</td>
<td>Clinical</td>
<td>30 (15 TT, 15 AM)</td>
<td>2011</td>
</tr>
<tr>
<td>7</td>
<td>Chiang et al, 2013 (13)</td>
<td>Radiograph</td>
<td>mTT vs AAM</td>
<td>Clinical</td>
<td>105 (55 TT, 50 AM)</td>
<td>2013</td>
</tr>
<tr>
<td>8</td>
<td>Cho et al, 2012 (13)</td>
<td>Radiograph</td>
<td>mTT vs AAM</td>
<td>Clinical</td>
<td>30 (15 TT, 15 AM)</td>
<td>2012</td>
</tr>
<tr>
<td>9</td>
<td>Clockaert et al, 2016 (13)</td>
<td>CT</td>
<td>TT vs AM</td>
<td>Clinical</td>
<td>32 (16 TT, 16 AM)</td>
<td>2016</td>
</tr>
<tr>
<td>10</td>
<td>De Abreu Silva, 2014 (13)</td>
<td>CT</td>
<td>TT vs AAM</td>
<td>Clinical</td>
<td>23 (9 TT, 14 AM)</td>
<td>2014</td>
</tr>
<tr>
<td>11</td>
<td>Francesci et al, 2013 (13)</td>
<td>Radiograph</td>
<td>TT vs AAM</td>
<td>Clinical</td>
<td>88 (46 TT, 42 AM)</td>
<td>2013</td>
</tr>
<tr>
<td>12</td>
<td>Gadikota et al, 2012 (13)</td>
<td>Direct</td>
<td>TT vs AM vs OI</td>
<td>Basic science</td>
<td>8 (AM, TT, OI)</td>
<td>2012</td>
</tr>
<tr>
<td>13</td>
<td>Gavriliidis et al, 2008 (13)</td>
<td>Direct</td>
<td>TT vs AAM</td>
<td>Clinical</td>
<td>10 (AM, TT)</td>
<td>2008</td>
</tr>
<tr>
<td>14</td>
<td>Geng et al., 2018 (13)</td>
<td>CT</td>
<td>TT vs AM</td>
<td>Clinical</td>
<td>104 (TT 48, AM 56)</td>
<td>2018</td>
</tr>
<tr>
<td>15</td>
<td>Guler et al, 2016 (13)</td>
<td>MRI</td>
<td>TT vs AAM</td>
<td>Clinical</td>
<td>48 (25 TT, 23 AM)</td>
<td>2016</td>
</tr>
<tr>
<td>16</td>
<td>Hart et al, 2018 (13)</td>
<td>MRI</td>
<td>mTT vs AM vs OI</td>
<td>Clinical</td>
<td>AM 21 (1st: 11, 2nd: 10), TT 20 (3rd: 9, 4th: 11)</td>
<td>2018</td>
</tr>
<tr>
<td>17</td>
<td>Hensler et al, 2013 (13)</td>
<td>CT</td>
<td>TT vs AM</td>
<td>Clinical</td>
<td>47 (27 TT, 20 TI)</td>
<td>2013</td>
</tr>
<tr>
<td>18</td>
<td>Hussin et al, 2018 (13)</td>
<td>Radiograph</td>
<td>mTT vs AAM</td>
<td>Clinical</td>
<td>60 (30 TT, 30 AM)</td>
<td>2018</td>
</tr>
<tr>
<td>19</td>
<td>Illingworth, 2011 (13)</td>
<td>MRI, radiograph, CT</td>
<td>TT vs TI</td>
<td>Clinical</td>
<td>50 (34 TT, 16 TI)</td>
<td>2011</td>
</tr>
<tr>
<td>20</td>
<td>Inderhaug et al, 2016 (13)</td>
<td>CT</td>
<td>TT vs AAM</td>
<td>Clinical</td>
<td>139 (TT: 41, AM: 58, AM2: 40)</td>
<td>2016</td>
</tr>
<tr>
<td>21</td>
<td>Jennings et al, 2017 (13)</td>
<td>Direct</td>
<td>mTT vs AM vs TT</td>
<td>Basic science</td>
<td>12 (TT 16, TT 28 AM 28)</td>
<td>2017</td>
</tr>
<tr>
<td>22</td>
<td>Jaecker et al, 2017 (13)</td>
<td>CT</td>
<td>TT vs AM</td>
<td>Clinical</td>
<td>101 (64 TT, 37 AM)</td>
<td>2017</td>
</tr>
<tr>
<td>23</td>
<td>Kaseta et al, 2008 (13)</td>
<td>Direct</td>
<td>TT vs OI</td>
<td>Clinical</td>
<td>12 (TT, OI)</td>
<td>2008</td>
</tr>
<tr>
<td>24</td>
<td>Larson et al, 2012 (13)</td>
<td>CT</td>
<td>TT vs AM vs OI</td>
<td>Basic science</td>
<td>20 (5 for TT, 5 AM rigid reamer (rr), AM flexible reamer (fr), 5 OI)</td>
<td>2012</td>
</tr>
<tr>
<td>25</td>
<td>Lee D.W et al, 2018 (13)</td>
<td>CT</td>
<td>OI vs mTT</td>
<td>Clinical</td>
<td>100 (50 mTT, 50 OI)</td>
<td>2018</td>
</tr>
<tr>
<td>26</td>
<td>Lee J.K et al, 2014 (13)</td>
<td>CT</td>
<td>mTT vs AM</td>
<td>Clinical</td>
<td>104 (52 mTT, 52 AM)</td>
<td>2014</td>
</tr>
<tr>
<td>27</td>
<td>Matassi et al, 2015 (13)</td>
<td>CT</td>
<td>TT vs OI</td>
<td>Clinical</td>
<td>40 (20 TT, 20 OI)</td>
<td>2015</td>
</tr>
<tr>
<td>28</td>
<td>Miller et al, 2011 (13)</td>
<td>CT</td>
<td>TT vs AM</td>
<td>Basic science</td>
<td>20 (10 TT, 10 AM)</td>
<td>2011</td>
</tr>
<tr>
<td>29</td>
<td>Mirzatanloooei et al, 2012 (13)</td>
<td>Radiograph</td>
<td>TT vs AM</td>
<td>Clinical</td>
<td>105 (47 TT, 58 AM)</td>
<td>2012</td>
</tr>
<tr>
<td>30</td>
<td>Noh et al, 2013 (13)</td>
<td>MRI</td>
<td>TT vs AM</td>
<td>Clinical</td>
<td>61 (30 TT, 31 AM)</td>
<td>2013</td>
</tr>
<tr>
<td>31</td>
<td>Osti et al, 2015 (13)</td>
<td>CT</td>
<td>TT vs AAM vs OI</td>
<td>Clinical</td>
<td>100 (36 TT, 32 AM, 32 OI)</td>
<td>2015</td>
</tr>
<tr>
<td>32</td>
<td>Pascual et al, 2013 (13)</td>
<td>Radiograph</td>
<td>TT vs AAM</td>
<td>Clinical</td>
<td>40 (23 AM 1 AM)</td>
<td>2013</td>
</tr>
<tr>
<td>33</td>
<td>Robert et al, 2013 (13)</td>
<td>CT</td>
<td>TT vs OI vs AAM</td>
<td>Basic science</td>
<td>13 (AM, TT, OI)</td>
<td>2013</td>
</tr>
<tr>
<td>34</td>
<td>Seo et al, 2013 (13)</td>
<td>CT</td>
<td>TT vs OI</td>
<td>Clinical</td>
<td>42 (17 TT, 25 OI)</td>
<td>2013</td>
</tr>
<tr>
<td>35</td>
<td>Shin et al, 2013 (13)</td>
<td>CT</td>
<td>TT vs AAM vs OI</td>
<td>Clinical</td>
<td>153 (42 TT: 73 AM, 38 OI)</td>
<td>2013</td>
</tr>
<tr>
<td>36</td>
<td>Silva et al, 2012 (13)</td>
<td>CT</td>
<td>AAM vs TT</td>
<td>Clinical</td>
<td>40 (20 TT, 20 AAM)</td>
<td>2012</td>
</tr>
<tr>
<td>37</td>
<td>Song et al, 2014 (13)</td>
<td>CT</td>
<td>TT vs AM</td>
<td>Clinical</td>
<td>60 (30 TT, 30 AM)</td>
<td>2014</td>
</tr>
<tr>
<td>38</td>
<td>Steiner et al, 2009 (13)</td>
<td>Direct</td>
<td>TT vs AM</td>
<td>Basic science</td>
<td>20 (AM, TT)</td>
<td>2009</td>
</tr>
</tbody>
</table>
Outcome:

Assessment of femoral aperture position in the included 48 studies, there were 28 studies included in meta-analysis.

Effects of interventions (Qualitative synthesis and meta-analysis):

- Femoral aperture position could be defined by one of 2 approaches
 1) Absolute definition (indirect methods):
 (The femoral aperture position of each technique in the lateral femoral condyle or inter condylar notch irrelevant to footprint position).

A. Coronal plane position as Percentage ratio of an overall scaling dimension from the lateral femoral condyle or the inter condylar notch.

 a) Coronal plane position perpendicular to Blumensaat’s line (BL):

- Using quadrant method measured on 3DCT scan; 14 studies assessed this outcome and their results were pooled in a meta-analysis {1}.
- Using quadrant method measured on radiograph (Xu et al, {51}) found that TI technique placed femoral aperture at a significantly lower position than TT technique in the axis perpendicular to BL. Regarding Franceschi et al, {17} found that femoral aperture position percentage perpendicular to BL in AM group was lower than TT group; 55% vs 22%, respectively. However, no statistical comparison was performed.
- Measured using ACA method on CT scan Lee, JK, Shin, and Illingworth {32,41,25} were pooled in meta-analysis {2}.
- Measured by Clock face method on axial MRI, (Gueler, Tasdemir and Yau) {21,10&53} discussed in meta-analysis {3}.
- Measured by Clock face method directly on specimen Alburquerque et al, {9} found that there was no statistically significant difference between both group.
- Measured by method proposed by Heming {55} on axial CT view, Larson et al, {30} found that OI aperture position was significantly lower than TT technique. Also demonstrated that femoral tunnel position with AM rr (rigid reamer) technique placed femoral aperture at significantly higher position than OI technique.

B. Coronal plane position as distance in mm from fixed anatomic land mark:

 a) On profile 3D CT view of the medial wall of the lateral femoral condyle:

- Femoral aperture inferior edge (distal anatomically) to inferior articular surface (posterior anatomically) on CT scan. we found 2 cadaveric studies Tompkins, 2013, {47} and In Larson et al, {30} (including 30 specimen) that measured this outcome, but the results couldn't be
pooled, the results were inconsistent, Tompkins, found non significant difference, while Larson, found that OI was significantly closer than TT and AM (OI was lower).

- Femoral aperture inferior edge (posterior anatomically) to inferior edge of articular cartilage (posterior anatomically) In Miller et al.\(^{(34)}\) distance was significantly lesser in AM group than in TT group (i.e. TI was lower).

 b) On Coronal MRI; the distance from femoral aperture position to "over the top" in AP axis Noh et al.\(^{(36)}\) found that AM was significantly nearer to "over the top" than TT technique (AM was lower).

C. Sagittal plane position as Percentage ratio of an overall scaling dimension from the lateral femoral condyle or the intercondylar notch:

 a) Sagittal plane position along BL

 - Using quadrant method measured on 3DCT scan; 14 studies assessed this outcome and their results were pooled in meta-analysis.\(^{(4)}\)

 - Femoral aperture position percentage from whole BL length (Harner method) measured on radiograph (Hussinet al and Yanasse et al)\(^{(24,32)}\) discussed in meta-analysis\(^{(5)}\)

 - Measured by quadrant method on sagittal MRI Guler and Yau\(^{(21,53)}\) studies were pooled in meta-analysis\(^{(6)}\)

 b) Sagittal plane position along PD axis

 - Measured using ACA method on CT scan Lee, JK , Shin, and Illingworth\(^{(32,41,25)}\) were pooled in meta-analysis\(^{(7)}\)

 - Measured by method proposed by Heming\(^{(55)}\) on Coronal CT view, Osti, et al\(^{(37)}\) found that both AM and OI aperture position were significantly more distal along PD axis than TT techniques.

D. Sagittal plane position as distance in mm from fixed anatomic land mark along PD axis:

 a) Measured directly on specimen:

 - Femoral aperture center to posterior articular border of the lateral intercondylar notch. Gravidilliis et al.\(^{(19)}\) TI aperture was significantly closer to deep articular border of lateral notch than TT technique (TI more proximal).

 - Distance between femoral aperture posterior margin to posterior articular cartilage measured on cadaveric specimens (posterior wall thickness). Alburqueque\(^{(9)}\) proved that there was no significant difference between both groups in post wall thickness.

 b) Measured on profile 3D CT view of medial wall of lateral femoral condyle.

 - Distance from femoral aperture center to posterior wall on CT scan. Miller et al.\(^{(34)}\) found that the distance was significantly lesser in AM group than in TT group (i.e.AM was more proximal).

 - Femoral aperture anterior edge to anterior articular surface (distal anatomically). Tompkins, 2013\(^{(47)}\) found that the the distance was significantly closer for AM than TT technique (i.e. AM more distal).

2) Definition relative to femoral footprint (Direct measurement):

A. Own study footprint position:

 a) Footprint of the same knee:

 - On Photographed on arthroscopic image: Distance of femoral aperture center to margin of femoral ACL footprint measured on photographed arthroscopic image. Gavrilidis et al.\(^{(19)}\) found that AM was significantly closer to footprint than TT technique with mean difference of 3.4 mm
On 3D model of specimen created by digitizing stylus Distance from femoral aperture center to footprint center

Along AP and PD axes. In Gadicota, et al.\(^{(18)}\) and Kaseta, et al.\(^{(29)}\) their results were analyzed in meta-analysis \{8\}, \{9\}. While in greatest distance. In Gadicota, et al.\(^{(18)}\) and Kaseta, their results were analyzed in meta-analysis \{10\}.

On 3D CT scan.

Distance from center of femoral aperture to center of footprint on CT scan. We found 2 cadaveric studies Tompkins, 2012\(^{(46)}\) and Robert \(^{(39)}\) (including 33specimens) that measured this outcome, we decided not to pool their results together because of different methodology in defining the femoral footprint during analysis of femoral aperture site on the same knee specimen.

b) Footprint of the contralateral knee on MRI reconstructed knee model mirrored and its osseous geometry aligned with contralateral intact knee model:

Difference in AP and PD position percentage between femoral aperture and femoral footprint where AP and PD position in each group was measured by a method that could be translated to anatomical coordinate axis method on MRI. Arno et al.\(^{(10)}\) found that in the AP position percentage difference was equivalent between the TT and AM groups but regarding the PD %, TT group was more proximal than the intact ACL.

- Distance in anatomic coordinate axes (in AP and PD axes). Abebe and Bowers \(^{(7&12)}\) data results were analyzed in meta-analysis \{11 and 12\}.
- Femoral aperture distance to femoral footprint center in greatest (hypotenuse) distance. Abebe, Bower and Hart \(^{(7,12&22)}\) their results were analyzed in meta-analysis \{13\}.

Reference anatomical footprint position:

a) Proportion of femoral aperture outside a referenced anatomical range formed by Forsythe et al.\(^{(56)}\) measured by anatomic coordinate axis method. Hensler et al.,\(^{(23)}\) and Illingworth et al.\(^{(25)}\) were included in meta-analysis \{14\}.

b) Proportion of outliers from an anatomical femoral aperture height measured by clock face method (≤ 11 o’clock for a right knee (or ≥1 o’clock for a left knee which was equivalent to ≤ 330° for a right knee (or ≥30° for a left knee (No reference cited). Tasdemir et al.,\(^{(45)}\) and Yau et al,\(^{(53)}\) found significantly less outliers in AM than TT group. These 2 studies were included in meta-analysis \{15\}.

Effect of intervention (Meta-analysis):

28 studies were included in meta-analysis analyzed for 15 outcomes as following:

1) Femoral aperture coronal plane position perpendicular to (BL) using quadrant method on CT scan. 14 studies fulfilled the criteria for review of this outcome. (Fig 2)
Figure (2): Forest plot of comparison: femoral tunnel aperture height on CT scan.

TI technique placed femoral aperture 12.11 % lower than TT technique, (95% CI) was (8.2% lower to 16.02 % lower). The difference was statistically significant (P<0.00001). There was severe heterogeneity (I²) =99%.

2) Femoral aperture coronal plane position along AP axis measured using ACA method on CT scan. In 3 studies (25, 32 & 41), TI technique placed femoral aperture 13.95 % more posterior than TT technique, 95% CI was (1.86 % more posterior to 25.98 % more posterior). The difference was statistically significant (P=0.02).

3) Femoral aperture coronal plane position along AP anatomical axis using Clock face method measured on axial cut MRI. In 3 studies (21, 48, & 53), TI technique placed femoral aperture 19.15 ° more posterior than TT technique, 95% CI (24.13 ° more posterior to 14.18 ° more posterior). The difference was statistically significant (P<0.00001).

4) Femoral aperture sagittal plane position along (BL) using quadrant method on CT scan: 14 studies fulfilled the criteria for review of this outcome (Fig 3).

Figure (3): Forest plot of comparison: (Quadrant method for femoral aperture depth on CT scan).

TI technique placed femoral aperture 1.09 % deeper than TT technique (95% CI) was (2.85 % deeper to 0.66 % shallower), however the difference was statistically non significant.

5) Femoral aperture sagittal plane position % from whole BL using Harner method measured on radiograph. In 2 studies (24 & 52), TI technique placed femoral aperture 12.5 % shallower than TT technique, CI 95% (9.92 % shallower to 15.08 % shallower). The difference was statistically significant (P<0.0001). There was no heterogeneity (I²=0%).

6) Femoral aperture sagittal plane position along BL by quadrant method measured...
on MRI. In 2 studies\(^{21,53}\), TI technique placed femoral aperture 2.89 % deeper than TT technique, 95% CI (5.86 % deeper to 0.08 % shallower), however this difference was statistically insignificant (P=0.6).

7) Femoral aperture sagittal position along proximal to distal axis using anatomic coordinate axis on CT scan. In 3 studies\(^{25,32,41}\), TI technique placed femoral aperture 0.58 % more distal than TT technique, 95% CI (1.46 % more proximal to 2.62 % more distal), however; the difference was statistically non significant (P=0.58).

8) Distance from femoral aperture center to the same knee footprint center along AP axis, on digitized 3D model of specimen. In 2 studies\(^{18,29}\), TI technique placed femoral aperture at 3.27 mm more posterior distance from footprint than TT technique, 95% CI (6.2 mm more posterior to 0.33mm more posterior). The difference was statistically significant (P=0.03).

9) Distance from femoral aperture center to the same knee footprint center in PD axis on digitized 3D model of specimen. In 2 studies\(^{18,29}\), TI technique placed femoral aperture at 2.88 mm more distal distance from footprint than TT technique, 95% CI was (6.06 mm more distal to 0.3 mm more proximal). However difference was non significant (P=0.08).

10) Greatest distance from femoral aperture center to the same knee footprint center on digitized 3D model of specimen. In 2 studies\(^{18,29}\) fulfilled the criteria for review of this outcome. TI technique placed femoral aperture at 3.95 mm distance closer to footprint than TT technique, 95% CI (8.29 mm closer to 1.12 mm farther), however this difference was statistically non significant (P=0.14).

11) Femoral aperture distance to contralateral femoral footprint center along AP plane on MRI. In 2 studies\(^{7,12}\), TI technique placed femoral aperture at 3.49 mm more posterior distance from footprint than TT technique, 95% CI (8.21 mm more posterior to 1.24 mm more anterior), however this difference was statistically non significant (P=0.15).

12) Femoral aperture distance to contralateral femoral footprint center in (Proximal to distal) plane using MRI. in 2 studies\(^{7,12}\) TI technique placed femoral aperture at 1.56 mm more distal distance from footprint than TT technique, 95% CI (6.01 mm more distal to 2.89 mm more proximal), however; this difference was statistically non significant (P=0.49).

13) Femoral aperture center to contralateral femoral footprint center greatest distance (hypotenuse) measures on MRI. In 3 studies\(^{7,12,22}\) TI technique placed femoral aperture at 1.38 mm closer to footprint than TT technique, 95% CI (5.65 mm closer to 2.88 mm farther), however; the difference was statistically non significant (P=0.52).

14) Proportion of femoral aperture outside reference anatomic range according to (Forsythe et al)\(^{56}\) In 2 studies\(^{25,23}\), TI technique significantly lowered the risk of apertures outside the referenced anatomic range by 80% than TT technique, 95% CI (92 % low risk to 53% low risk), the difference was statistically significant (P=0.0003).

15) Proportion of outliers from referenced anatomical femoral aperture height measured by clock face method. In 2 studies\(^{53,45}\), TI technique lowered the risk of femoral apertures outside the referenced anatomical range by 93 %. 95% CI (99% low risk to 51 % low risk). This difference was statistically significant (P=0.007).
DISCUSSION:

Regarding the ability of each technique to achieve the footprint center position; Directly comparing the distance of aperture center placed by each technique to footprint center of the same knee on digitized 3d model showed non significant difference in 48 specimens of 2 studies (18&29). On 87 patients of 3 studies (7, 12&22) assessing the ability of each technique to recreate the footprint position of the contralateral knee on MRI, there was non significant difference in distance of aperture center to footprint center. Contradictory to the pervious findings, aperture placed by TI technique was significantly closer, albeit by small difference of 2.4mm and 4 mm, in two studies using CT scan and including 59 specimens (39&46).

Regarding the ability of each technique to achieve the proper footprint coronal plane position along AP anatomical axis on digitized 3d model of 48 specimens of 2 studies (18&29) showed that TI technique placed aperture at less anterior distance from footprint than TT technique, albeit with a small difference of 3.3 mm. Contradictory to the pervious findings, there was non significant difference between both techniques in recreating the AP footprint position of the contralateral knee in two studies using MRI and including 46 participants (7&12).

Regarding the axis perpendicular to BL, assessing the spatial position In footprint referenced to BL, the apertures placed by TI and TT techniques were in lower deep quadrant in 70% and 50% of specimens, respectively, in one study including 20 specimens and using CT scan (46).

Regarding the ability of each technique to achieve the proper footprint sagittal plane position, regarding PD anatomical axis, there was non significant difference between both techniques in recreating the PD footprint position of the same knee assessed on digitized 3D model in two studies including 48 specimens (18&29).

Regarding the direction along BL, Comparing the ability of each technique to achieve a reference anatomical position, one study (8) used Frosythe's reference anatomical position (56) along BL (28.4%) in a clinical study on 69 patients and found that TI technique placed the aperture center 11.7% deeper and closer to the referenced position than TT technique.

Regarding the difference in coronal position of femoral aperture placed by each technique in the axis perpendicular to BL, in 14 studies including 990 patients, TI technique significantly lowered the position of the placed aperture by 11.3% (95% CI 7.9% lower to 14.7% lower) than the TT technique as measured by quadrant method on 3D CT. A consistent finding as demonstrated on 52 patients of 1 study (51) where TI technique significantly lowered the position of the placed aperture than the TT technique as measured by Quadrant method on radiography.

While along AP anatomical axis, in 3 studies (25,32&41) including 307 patients, TI technique placed femoral aperture in significantly more posterior position than TT technique with mean difference of 13.9% (95% CI of 1.9% to 29%) as measured by anatomic coordinate axis method on 3D CT. A radiological study (36) using MRI performed on 61 participants demonstrated that the posterior margin of aperture placed by TI technique was significantly at more posterior distance from the over-the-top point than TT technique with mean difference of 7 mm. Contradictory to these findings, there were inconsistent results of qualitative synthesis of results of 2 studies (30&47) assessing the distance of aperture inferior edge to inferior articular surface on profile 3D CT view of medial wall of LFC of 40 specimens.
Regarding the difference in sagittal position of femoral aperture placed by each technique, in the axis along BL. On 990 patients (14 studies), there was non-significant difference between both techniques in the position of placed aperture along BL as measured by quadrant method on 3D CT. Using the same measurement method on radiography and MRI, a consistent result was demonstrated on 72 patients 1 study,(51) and 87 patients (2 studies, (21&53) respectively.

While in the axis along PD anatomical axis, on 307 patients (3 studies (25, 32& 41) there was non significant difference between both techniques in the PD position of placed aperture as measured by anatomic coordinate axis method on 3D CT. Contradictory to that, on 100 patients included in 1 study(37), TI technique placed femoral aperture at a significantly more distal position than the TT technique as measured by clock face method on CT coronal view. Non significant difference was demonstrated in 3 studies; (9, 30&36) Contradictory to that a significant difference between both techniques was demonstrated. The direction of that intervention effect was diverse among studies.

Conclusion:

There was non-significant difference between TI and TT techniques in the distance from femoral aperture center to footprint center. Regarding placement in the direction perpendicular of BL, TI technique placed femoral aperture in lower deep quadrant a little bit more than TT technique and significantly lowered the position of the placed aperture than TT technique, but the mean difference looked clinically insignificant. Regarding placement along AP anatomical axis, TI technique placed Femoral aperture at less anterior distance from footprint than TT technique with a small difference and placed femoral aperture in a more posterior position than TT technique and the difference looked clinically significant. Regarding sagittal plane placement of femoral aperture along AP anatomical axis and along BL, there was non-significant difference between both techniques.

REFERENCES

16. Abreu-e-silva GM De, Baumfeld DS, Bueno LR, Pfeilsticker RM, Ant M, SC. Knee [Internet]. 2014; Available from: http://dx.doi.org/10.1016/j.knee.2014.05.004

43. Song E, Kim S, Lim H. Comparisons of tunnel-graft angle and tunnel length and position between transtibial and transportal techniques in anterior cruciate ligament reconstruction.
reconstruction. 2014;2357–62.

45. Does the anteromedial portal provide clinical superiority compared to the transtibial portal in anterior cruciate ligament reconstruction in nonprofessional athletes in. 2015;49(5):483–91.

مراجعة منهجية وتحليل بعدي لما تم نشره من أبحاث مقارنة حفر النفق الفخذي عن طريق القصبة مقابل الحفر المستقل عن القصبة في علاج النفق الفخذي الأصلي أمامي: تقييم مكان فتحة النفق الفخذي
مراجع: أبو السعود، حميم، مجد فرقت
نص جراحة العظام، كلية الطب - جامعة عين شمس
المقدمة: بالرغم من أن هناك العديد من الدراسات العملية والعملية التي قُربت بين حفر النفق الفخذي عن طريق القصبة مقابل الحفر المستقل عن القصبة (النفق الأمامي الداخلي والنفق الخارجي الداخلي) في إيجاد فتحة النفق الفخذي أثناء عملية إعادة بناء النفق الفخذي الامامي، إلا أنه ليس هناك اجماع على أفضل مكان تشريحي للحصول على أفضل نتائج.
الهدف من البحث: مراجعة منهجية وتحليل بعدي لما تم نشره من أبحاث في مقارنة حفر النفق الفخذي عن طريق القصبة مقابل الحفر المستقل عن القصبة في إيجاد فتحة النفق الفخذي أثناء عملية إعادة بناء النفق الفخذي الامامي، أجاد تقييم مكان فتحة النفق الفخذي.
الطريق البحث: لقد قمنا ببحث عن 869 بحث على الأندية (PubMed, Cochrane Library, Scholar) للدراسات التي تقييم مكان فتحة النفق الفخذي في الأشخاص والجثث التي تعرضت إلى عملية إعادة بناء النفق الفخذي الامامي، ونتائج: تظهر 84 بحث عملي ومعظم قُربت بين حفر النفق عن طريق القصبة والحفر المستقل عن القصبة في إيجاد فتحة النفق الفخذي و هذه الدراسات كانت تشمل على 2384 ركيزة تعرضت إلى عملية إعادة بناء النفق الفخذي الأمامي، في هذه الدراسة، قمنا بتحديد مكان فتحة النفق الفخذي في تلك الدراسات والتي أوضحت أن الفرق بين حفر النفق عن طريق القصبة والحفر المستقل عن القصبة كان غير ملحوظ سوي في الاتجاه العمودي على خط البلومنات، ولكن بمتوسط اختلاف طفيف أيضا في الاتجاه الأمامي الخلفي تشريحي
الاستنتاج: كان هناك اختلاف غير ملحوظ بين حفر النفق عن طريق القصبة والحفر المستقل عن القصبة بخصوص إيجاد فتحة النفق الفخذي الاقرب إلى مكان أثار النفق الفخذي الأمامي. كان هناك اختلاف غير ملحوظ في الاتجاه السهري في اتجاه خط البلومانات والإتجاه القريب البعيد. وخصوصا مكان فتحة النفق الفخذي في الاتجاه الم ромادي، عمدا على خط البلومانات). فالحفر الخلفي على طريقة القصبة هو الآخر نقطة النفق الفخذي في هذا الاتجاه. وخصوصا في الاتجاه الأمامي الخلفي التشريحي فالحفر المستقل عن القصبة كما يوضح مكان فتحة النفق الفخذي أكثر للفح ملحوظ عن حفر النفق عن طريق القصبة وهذا يعتبر مكمن أفضل على حسب الوضع التشريحي لإعادة بناء النفق الفخذي الأمامي، ولكن على حسب المفهوم الحديث لأثار النفق الفخذي الامامي، فإن هذا المكان يعتبر غير مناسب.