ROLE OF MRI DIFFUSION TENSOR IMAGING IN ASSESSMENT OF RESPONSE OF NORMAL APPEARING WHITE MATTER IN CASE OF MULTIPLE SCLEROSIS.

Mona M. Alsherif, Eman Soliman, Remon Z. Elia and Mona A. Nagi

ABSTRACT:

Background: Multiple sclerosis (MS) is an autoimmune inflammatory demyelinating disease of brain & spinal cord. Conventional MRI (T1, T2, FLAIR, enhancedT1) provides information of morphology of demyelinating plaques, but irrelevant to give details about normal WM tracts which are involved pathologically in the MS process. Diffusion MRI, DTI are widely used non-conventional MRI techniques which provide better solution for studying normal appearing white matter. Diffusion tensor imaging (DTI) reflects water diffusion within tissues therefore any white matter fibers alterations will be visible within it before conventional techniques.

Aim of the work: evaluation of normal appearing white matter of the brain in MS patients by diffusion tensor imaging examination thus assessing its ability to detect early abnormalities.

Patients & Methods: the study included 30 patients; 21 females and 9 males having MS (between 22 and 48 years of age) with 25 years control healthy volunteer. MR examination was in standard 3 Tesla units (Acheiva, Philips). Technique included: Conventional MR examination and Diffusion Tensor imaging.

Results: our study showed that DTI provide details about early affection of normal appearing white matter in MS cases when no visible plaques are detected in conventional MRI.

Conclusion: There is a strong relationship between clinical status of patients & diffusion tensor imaging readings especially in case of deterioration in course of disease & no new visible changes can be detected in conventional MRI.

Keywords: Multiple sclerosis, MRI–Diffusion tensor imaging, Fractional anisotropy, Apparent diffusion coefficient, normally appearing white matter.

INTRODUCTION:

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system, it is the most common cause of non-traumatic disability in middle-age individuals. MS is estimated to affect more than 2 million worldwide. In Egypt, a study was conducted in 2019 revealed that MS cases were 1.4% of all neurological diseases[1].

Although the role of clinical management & scientific investigation of MS increasing, but still conventional magnetic resonance imaging (MRI) is of limited association with clinical progression of cases, also it has low sensitivity & specificity in normal-appearing white matter affection, but diffusion tensor imaging (DTI) technique found to be more sensitive in identifying the tissue damage (normally
appearing white matter in conventional techniques of MRI[2].

Fractional anisotropy (FA) (one of DTI quantitative indices) evaluate widespread tissue damage outside the lesions seen by conventional MRI, it measures the directionality of diffusion inside tissues [3].

Micro structural changes in NAWM (normal appearing white matter) in early stages of MS detected by diffusion tensor image technique are seen in all types of MS, however diffusion parameters differ according to MS phenotype (MS subtypes demonstrate different diffusivity patterns). So diffusion indices represent important markers of MS phenotype. In addition, combination of diffusion measures & other conventional MRI findings & clinical progression of cases give complementary information on different types of pathological damage according to MS type, so DTI measures have been identified as prognostic markers of disease course and as a means of monitoring anatomical changes over time[4].

MATERIAL AND METHODS:

The current study conducted on Thirty patients 19 females and 11 males having MS (between 22 and 48 years old) referred from Neurologists to Ain Shams University Radiodiagnosis Department and 25 ages’ matched healthy control volunteer over a period of 24 months (February 2020–February 2021).

Each patients included in the study subjected to:

- Written informed consent before participation.
- Full history taking.
- Reviewing medical sheet whenever available.
- Revise of theirs laboratory results including renal function tests and previous radiological investigation.

- Inclusion criteria: Known cases of MS.
- Exclusion criteria: Claustrophobic patients and MS patients with another brain parenchymal pathology, e.g. brain neoplasm.
- MR examination using a 3 Tesla unit (Philips, Achieva), Which include:

1. Conventional MR sequences: T1WI in axial plane, T2WI in axial, sagittal and coronal planes, and FLAIR in axial and sagittal planes. T1WI: TR 450, TE 15, matrix 80 × 81, FOV 230 × 177, slice thickness 5 mm. T2WI: TR 3612, TE 100, matrix 208 × 127, FOV 230 ×177, slice thickness 5 mm. FLAIR: TR 6000, TE 120, matrix 240 × 111, FOV 230 × 184 slice thickness 5 mm.

2. Diffusion Tensor imaging sequence: The DTI data were obtained using a single-shot echoplanar imaging sequence (TR = 10.4 s/TE = 100 ms) in 25 encoding directions. Diffusion gradient: 40 mT/m, using a b value of 800 s/mm². A FOV = 256 × 256 mm² and a data matrix = 128 × 128 were used. Image resolution= 2 × 2 × 2 mm3, number of slices = 30, with a thickness of 2 mm, with no gap, and with the total scan time = 10–12 min.

- Post processing image analysis:-All the diffusion-weighted images were transferred to the workstation supplied by the manufacturer (Achieva R2.5 workstation, Philips). Images were post-processed using the Philips software devised for tractography. The maps obtained were: FA 2D grey maps and Directionally-encoded color FA maps and fused FLAIR/DTI maps.

The study was done after approval of ethical board of Ain Shams University.

Statistical analysis:

The collected data was analyzed using Microsoft Office Excel 2003 and SPSS program (Statistical Package for Social
Role Of MRI Diffusion Tensor Imaging in Assessment of Response of Normal Appearing White ...

Sciences) for Windows Version 20. Quantitative data were presented as mean ± standard deviation (SD). For quantitative data, comparison between groups was done by t test for independent samples. For qualitative data, relation between groups was done using the Pearson correlation. A P value of 0.05 was chosen as a level of significance.

RESULTS:

Thirty patients were included in this study. Their age ranged from 20 to 52 years with a mean of age (mean=32.8 SD = 9.5), they were 19 females and 11 males (Diagram 1).

Diagram(1): Doughnut chart reveals distribution of patients according to gender.

We placed round-shaped ROIs in FA and ADC maps, measuring the FA and ADC values from NAWM of our patient group which compared to the normal value form normal control volunteer which revealed lower FA values in the NAWM of the patients (average FA value 0.51, SD 0.07) in comparison to the respective FA values in controls (average FA value 0.73, SD 0.06) (Diagram 2).

Diagram (2) : Stock chart display statistic correlation between FA measurements in NAWM of MS patients and in the respective WM of control volunteer.

FA fractional anisotropy, NAWM normal appearing white matter, MS multiple sclerosis.

Higher ADC value were also found in the NAWM of the patients (average ADC value 0.81 10^{-3} mm2/s, S 0.11) in comparison to the respective WM ADC values in control (average ADC value 0.73 10^{-3}mm2/s, SD 0.04)(Diagram 3).
Diagram. (3) Stock chart display statistic correlation between ADC measurements in NAWM of MS patients and in the respective WM of control volunteer. The graph displays the significant differences in ADC measurements control.

ADC Apparent diffusion coefficient, **NAWM** normal appearing white matter, **MS** multiple sclerosis.

Case (1): RR-MS 21 year’s old female patient with recurrent bouts of clinical symptoms as well as scattered periventricular & subcortical plaques of altered signal intensity more evident at right fronto-parietal region on conventional MRI sequence (Fig1).

![Fig 1: Axial FLAIR MRI show scattered foci of high signal intensity are seen periventricular & subcortical regions mainly of the right fronto-parietal region.](image1)

DTI findings: Fused FLAIR/ DTI axial images show heterogeneous color maps of the fronto-parietal white matter (Fig 5) denoting affection of normal appearing white matter with its FA and ADC values as follows (table 1).

![Fig 2: Fused FLAIR/ DTI axial images show ROI-based FA and ADC values.](image2)
Role Of MRI Diffusion Tensor Imaging in Assessment of Response of Normal Appearing White …

Table 1: FA and ADC value of NAWM

<table>
<thead>
<tr>
<th>White matter region</th>
<th>FA</th>
<th>ADC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right frontal</td>
<td>0.3</td>
<td>0.7</td>
</tr>
<tr>
<td>Left frontal</td>
<td>0.3</td>
<td>0.8</td>
</tr>
<tr>
<td>Right parietal</td>
<td>0.6</td>
<td>0.9</td>
</tr>
<tr>
<td>Left parietal</td>
<td>0.4</td>
<td>0.7</td>
</tr>
<tr>
<td>Right occipital</td>
<td>0.6</td>
<td>0.8</td>
</tr>
<tr>
<td>Left occipital</td>
<td>0.5</td>
<td>0.7</td>
</tr>
<tr>
<td>Corpus callosum</td>
<td>0.7</td>
<td>0.8</td>
</tr>
<tr>
<td>Brain stem</td>
<td>0.7</td>
<td>0.9</td>
</tr>
<tr>
<td>Right corona radiata</td>
<td>0.6</td>
<td>0.8</td>
</tr>
<tr>
<td>Left corona radiata</td>
<td>0.5</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Case (2): SP- MS 40 year's old male patient with deteriorated clinical symptoms as well as scattered periventricular & subcortical plaques of altered signal intensity of the left parieto-occipital region on conventional MRI sequence (Fig 3).

Fig 3:-Axial FLAIR show scattered foci of abnormal white matter signal intensity mostly seen in the region.

DTI findings: Fused FLAIR/DTI axial images show heterogeneous color maps of the left parieto-occipital region(Fig 4) denoting affection of normal appearing white matter with its FA and ADC values as follows (table 2).

Fig 4: Fused FLAIR/ DTI axial images show ROI-based FA and ADC values.
DISCUSSION:

Multiple sclerosis (MS) is an autoimmune, chronic disease of the central nervous system that is characterized by focal and diffuse inflammation and neurodegeneration leading to axonal loss [5].

Conventional MRI sequences (including T2-weighted, pre- and post-contrast T1-weighted scans) has had an important role on earlier diagnosis of MS, and monitoring response to current disease-modifying treatments and upcoming experimental agents. Yet is limited as regard low pathological specificity and low sensitivity to occult damage in normal-appearing white matter (NAWM). As well as limited associations with clinical status [6].

Seventy percent of the current study population were female which agree with Dahlke. F., et al [7] that MS is approximately twice as common among women as men, it has highly variable individual disease courses & different phenotypes (RRMS 85 %, PPMS 15 %, SPMS) [7].

Pathologically the degree of axon loss in WMLs (white matter lesions) correlates with the extent of peripheral immune or resident glial inflammation, also anterograde axonal loss by Wallerian degeneration can occur in normal-appearing WM either adjacent or distal to the lesion and occurs early in MS [8]. Altering the structural organisation of nerve bundles is responsible on the reduction of FA; even the reparative phenomena of the reactive gliosis may decrease the FA, since glial cells do not have the same organisation in space as the cells that they replace [9].

In this study MR DTI parameters take the advantage than conventional MRI sequences in detection the early NAWM affection before its clinical or other conventional MRI parameters appearance (by giving information about diffusion of water in brain tissue within three main directions, decreased perpendicularly to the myelin sheaths and cell membranes of white-matter axons) , which agree with ElSayed et al. [10], Fujimori, Juichi, et al. [11], Cercignani, Mara, et al. [12], Chen et al. [13] and Fatehi et al [14]. Studies that show significantly lower average fractional anisotropy values of NAWM as compared to normal controls indicate the presence of occult damage to the NAWM.

The current study results are in accordance with those of previous study done by Yurtsever et al. [15] which demonstrate that ADC values of NAWM in MS patients were higher than the values of normal population.

Conclusion:

The current study concludes that MR

Table 2: FA and ADC value of NAWM

<table>
<thead>
<tr>
<th>White matter region</th>
<th>FA</th>
<th>ADC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right frontal</td>
<td>0.4</td>
<td>0.9</td>
</tr>
<tr>
<td>Left frontal</td>
<td>0.4</td>
<td>0.8</td>
</tr>
<tr>
<td>Right parietal</td>
<td>0.5</td>
<td>0.8</td>
</tr>
<tr>
<td>Left parietal</td>
<td>0.5</td>
<td>0.8</td>
</tr>
<tr>
<td>Right occipital</td>
<td>0.2</td>
<td>0.9</td>
</tr>
<tr>
<td>Left occipital</td>
<td>0.6</td>
<td>0.9</td>
</tr>
<tr>
<td>Corpus callosum</td>
<td>0.75</td>
<td>0.8</td>
</tr>
<tr>
<td>Brain stem</td>
<td>0.4</td>
<td>0.8</td>
</tr>
<tr>
<td>Right corona radiata</td>
<td>0.6</td>
<td>0.8</td>
</tr>
<tr>
<td>Left corona radiata</td>
<td>0.7</td>
<td>0.7</td>
</tr>
</tbody>
</table>
Role Of MRI Diffusion Tensor Imaging in Assessment of Response of Normal Appearing White …

DTI indices (FA and ADC) are superior than conventional MR imaging with high sensitivity in MS clinical & pathological progression expectation by early detection of microstructural changes in NAWM in conventional parameters, & so greatly helpful in early management of these patients.

REFERENCES:

